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1.When there is only a limited number of labeled data, complex
neural networks often suffer from over-fitting

2. Semi-supervised approaches typically involve a sophisticated
Neural Machine Translation (NMT) system,such approaches may
be bothersome in real-world scenarios by requiring an additional
NMT system

3.Traditional self-training does not perform sample selection,
nor does it consider noises in the generated pseudo-labels
during training
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Figure 1: Framework overview.
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2D - P o the loss function measuring the classification loss between
i () Carsiny antiomarion { | Noise-robust loss Graph-besed | the predictions and the labels, typically the cross-entropy
\ m ection Y i Ty izati / . . .

e e M fumction (£(x,,y")) _ regularization (RGT))- loss. R is the regularization term that prevents the model
Figure 1: Framework overview. from overly aggressively learning from data. A is the hyper-

parameter controlling the impact of 2.
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Figure 1: Framework overview. c
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Figure 1: Framework overview.

Instead of having deterministic weights, BNN assumes
a prior distribution over its model parameters. Consider-
ing the mapping function f" for BNN, where W is the
model parameters, the parameter optimization is achieved
by finding the posterior distribution over model parameters
p(W|Dyyqin) on atraining dataset Dy, ,;,,. During inference,
for data instance z, the probability for class ¢ is p(y =
clz) = [, ply = c|f (2))p(W]|Dtrain)dW. However, it
1s computationally intractable to calculate over all possible
W and we have to find a surrogate distribution gg () in a
tractable family of distributions to replace the true model
posterior p(W|Dy,q4in). Gal and Ghahramani (2016) and
Gal, Islam, and Ghahramani (2017) developed Monte-Carlo
Dropout (MC Dropout) using BNN and showed that the
probability for class ¢, p(y = ¢|x), can be approximated
by considering g (1) to be the dropout distribution (Srivas-
tava et al. 2014), which is tractable, with 7" masked model

weights {W,}2_, ~ qo(W):

1 ~
p(y:CIIEDtrain) ~ ?Zp(y:dfw‘*(m)] (4)
t=1
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where Pc = P(y = c|"**)) js the estimated probability of
class ¢ given by the model parameters : W, ~ ¢o(W) in the
t-th trial in the MC Dropout

Using entropy HI(-) to measure the level of information we
have, we define the information gain B to be the difference
between the final entropy H(y|x, D) after seeing the whole
unlabeled dataset D;; and the current entropy H(y|xz, W)
given the model parameters W in the current iteration. For-
mally, for data sample x € Dy, the information gain B with
respect to its expected label is

B(ya Wll‘. DU) - H(ylil?, DU) - EP[W|DU} [H(ylmﬁ W)]

(5)

where p(W|Dy;) is the posterior distribution of the model
parameter in current iteration. As Eq. (5) is computationally
intractable, it can be approximated by MC Dropout (Gal,
Islam, and Ghahramani 20 l?):

Z Zﬁi)lug Z
+ = Zchlog (L) (6)

]E(J W|$ DU
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1 — B(y;, W|z;, Dy)

8; =

.. coy [ - Bly;, Wle;, Do)

where >, cp, [1 = B(y;, Wlz;, Dy)
factor '
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{ — P . . Al D} if s —'/—‘ Y
: (2) Certainty estimation { | Noise-robust loss Graph-based :
(3) Sample selection _# _function (£(x;,y"))  regularization (R(F W]].,:'

| where y;, y; are the hard pseudo-labels of z; obtained by the
Figure 1: Framework overview. teacher model W* from the last iteration.
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Mathe-matically, given a similarity graph G and a pre-defined mar-
(5) Copy gin m between dissimilar features, we enhance the contrastthrough
the regularization term R in the training objective:

{Lj)EE,Eij:l

(4) Train
---------- { 1)fsm'dl":'lo_?-r“.":,-t-ate...____“ argming s, £(xi,y") + AR(SY)
' e .
H ! ' | | W . 2
o = i LA RIS SR UESER TN

(2) Certainty estimation - Noise-robust loss Graph-based .
(3) Sample selection _function (£(x;,y"))  regularization (R(f")) /

------------------------------------------------ + % max(0,m — [[h(x:) — h(z;)ll,)? (10)

Figure 1: Framework overview. (i,j)EE, e:;=0
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T T
- 1 1
Y(vi) = 1-Var(y = gilz;) = 1 - T ZP? +(? ZPQE
t=1

t=1 =
(11)

(i) +y(vy)
y(eij) = 5

(12)

where Pt =f(y = 15;‘1‘|.)11Lit (i) s the probability of ¥: pre-
dicted by W, where W; is the model weight sampled in
the t-th iteration in MC Dropout.
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To construct the reliable sub-graph G’ (V”, E’), we add all
the nodes in GG into G’, i.e. V' = V. As for the edge set E’,
for each node v;, we select the top k£ edges with the highest
reliability « from the positive set and from the negative set

Teacher model Student model : .
eacher mode et moce to form the reliable edge set £’ (2k edges in total for each
(5) Copy node), where £ is a hyper-parameter, and the positive set and
the negative set are defined as
4) Trai 111 . L L= —
(1) Pseudo-annotate -tin:ml:aw:. &5y €0, y") + AR(F™) 1. pDSlt]Vﬁ set: {(1} ‘?) | e'ljl' o 11 j a 1} 2’ o |SU |}
A S TP s | %D 2. negative set: {(4,7) | e;; = 0,7 =1,2,...,|Sul}
[ Unlabeled m:fme;ted : 0, . | In this way, we have a reliable graph with much fewer
LGBy el W wrong edges, and we can still perform the same optimization
: (2) Certainty estimation E N bust | Graph-based : : o T ! iy .
{2 Cartsy sethue i f_u:;fu:j{flg't e ), on the resulting sub-graph G" as before:
Figure 1: Framework overview. W ’ 2
R(fY.GY = Y k() — h(z;)]]3

{?«,j)E EHE{j:l

£ max(0om— [[A(z) - hlz))]],)? (13)

{i,j]EEF,ﬁiJ =ﬂ
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Utilizing traditional cross-entropy loss to train pseudo-
annotated data 1s prone to error accumulation. Consider
I(fY(z),y) = o(pw(x,y)) to be the loss function, where
pw (x,y) is the probability of the target class y predicted by
the model W, and ¢(u) is the classification loss. For cross-

Teacher model Student model Emmp}’ 10551 E(fw{x)a y) - lﬂ(PW (.’Jff? y)) ThEl‘I, thﬂ gra-
A dient induced by the cross-entropy loss is
(4) Train ow oW Pw [:.‘1?, y) oW
.......... ) Prevdoamnonte o, ff?.".’!’.":*:?*...ff..‘ffi‘. .?.!.T.%{*}.{‘f’)........ (14)
ﬁ W a‘-‘-*? = [-mow(z.y) —¢"(—7), if ' (pw(z,y)) < -7
i | Unlabeled ugmen ; E p— )
| dataDy data Sy NS | —log pw (x, ), otherwise
(2) Certainty estimation § Noise-robust loss Graph-based ( 1 5)
(3) Sample selection % function (£(x;,y"))  regularization (R(F™)) ./ . . . : -
T e Integrating it with cross-entropy loss , the partially huberised
Figure 1: Framework overview. cross-entropy loss (PHCE loss) is obtained:
f_ [~ew(zy) +logT 1 ifpw(zy) <2 o
—logpw (2, y), otherwise

where 1 is a hyper-parameter related to the degree of noise.
T is set larger if the data are essentially noise-free
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Dataset | Full training 30 labeled training data per class
BERT BERT UDA Standard ST UST CEST (Ours)
AG News 92.98 79.84 85.92 84.07 86.90 87.05
DBpedia 99.13 98.01 96.88 97.25 98.30 98.61
IMDB 91.26 80.90 89.30 83.81 84.06 90.20
Elec 96.48 85.07 89.64 89.50 89.97 92.26
SST-2 93.19 74.23 83.58 84.81 88.09 89.71
Average 94.61 83.61 89.06 87.89 89.46 91.57
(+0.00%) (+5.45%) (+4.28%) (+5.85%) (+7.96%)

Table 2: Performance (test accuracy(%)) comparison with baselines.k[‘he results are averaged for three runs) with each run
taking 3-8 hours on an NVIDIA RTX3090. BERT on the second column means directly fine-tuning without using unlabeled
data. Standard ST denotes standard self-training. \@deuce@all baselines with PyTorch except that UDA’s results are cited.




ATAI
Advanced Technique of
Artificial Intelligence

95
. 90 AG News
o) g - IMDE
a1 S 85
"Fﬁ N = — Flec
e i SRR g g0 DBpedia
& A =
‘ o F Ak . BLY =
. oy o — 5T
&;' ii '- < 75
¥ ' 70
1 2 3 4 5 i 7 B 9 10
(b) Self-training Iteration

Figure 3: t-SNE visualization. (a) without similarity graph Figure 4: Test accuracy (%) over self-training iterations. The

(b) similarity graph without considering reliability (c) with solid '*?“d the df:’ttﬂd HHES; shows the results of training with
reliable similarity graph. and without using the noise-robust loss (PHCE loss).
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AGNews IMDB  DBpedia Elec SST-2 Average
BERT (direct fine-tuning) 79.84 80.90 98.01 85.07 7423 83.61
CEST 87.05 90.20 98.61 92.26 89.71 91.57
— noise-robust loss 86.80 39.68 97.91 92.08 88.75 91.04
— reliable sub-graph 86.56 88.37 97.44 91.96 87.95 90.46
— smoothness regularization 86.10 86.76 08.18 90.47  88.33 89.97
— without sampling 84.07 83.81 97.25 89.51 8481 87.89

Table 3: Ablation Study of performance (test accuracy (%)) over different design configurations.
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Figure 5: Test accuracy (%) under different number (K) of
labeled training data per class.
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Dataset BERT UST CEST(Ours)
AG News 81.66 84.63 86.22
DBpedia 95.40 97.21 97.16
IMDB 75.40 78.83 90.65
Elec 76.69 91.76 92.21
SST-2 79.44 84.00 89.56

81.72 87.29 91.16
Average

(+0.00%)  (+5.57%) (+9.44%)

Table 4: Test accuracy (%) with only ten labels per class.
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Table 5: Performance comparison with non-BERT-based
semi-supervised approaches. (Li and Ye 2018; Gururangan
et al. 2019; Dai and Le 2015; Li and Sethy 2020) (RL: Re-
inforcement Learning, Adv.: Adversarial, Temp. Ens.: Tem-
poral Ensemble, Layer Part.: Layer Partitioning)

Datasets Model # of labels  Acc.
IMDB CEST (ours) 30 90.2
Variational Pre-training 200 82.2
RL + Adv. Training 100 82.1
SeqSSL + Self-training 100 79.7
Layer Part. + Temp. Ens. 100 75.8
SeqSSL + Adv. Training 100 75.7
Layer Part. + I model 100 69.3
AG News  CEST (ours) 30 87.1
Variational Pre-training 200 83.9
SeqSSL + Self-training 100 78.5
SeqSSL + Adv. Training 100 73.0
DBpedia  CEST (ours) 30 98.6
RL + Adv. Training 100 98.5
SeqSSL + Self-training 100 98.1

SeqSSL + Adv. Training 100 96.1
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